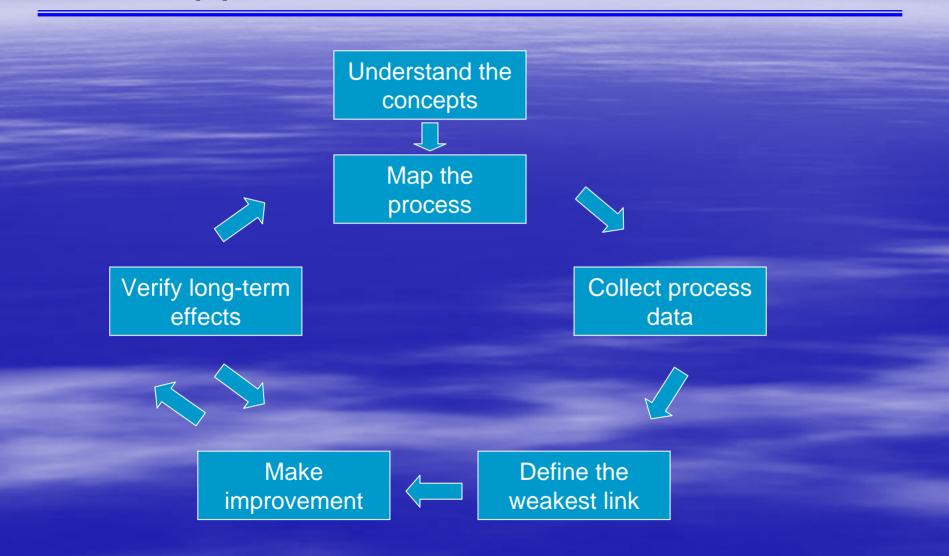
Set Up a Six Sigma Process

- A Simple Way to Implement Six Sigma

May. 2nd, 2005

Introduction


- Guiding Principle
 QIT's Approach
 Process Mapping
 Data Collecting
- Data Analysis
- Long-term effects verification

Guiding Principles

- Set up a Six Sigma process can be easy
- The ultimate purpose of process management
 - Monitor process
 - Identify the weakest link
 - Improve the process
 - Verify the long-term effects

QIT's Approach

Understand the Concepts

Defect vs. Defective

- Defect A failure to meet one of the acceptance criteria of customers. A defective unit may have one or more defects.
- Defective- an ENTRIE UNIT that fails to meet acceptance criteria
- Example
 - A unit may have 10 defects (discolor, missing part and etc.)
 - A production lot may have 10 rejected units 10 defectives

Traditional Process Control vs. Six Sigma

- Traditional Process Control focuses on DEFECTIVES and passed performance
- Six Sigma targets DEFECTS and predicts future performance

Example

- P chart or nP chart shows the trend and control limits of the defectives
- Sigma and DPMO measure the possibility of producing a defect
- Throughput Yield represents the possibility to produce defect free products

Yield vs. Throughput Yield

- Yield is defined as a percentage of meeting commitments
- Throughput Yield The possibility to produce defect-free products
- Example
 - 99% Yield means the 99% of the products is accepted and 1% of the products is rejected
 - 99% Throughput Yield means the possibility to produce defect free products is 99%, and the possibility to have a defect is 1%.
- Formula:

$$Ytp = e^{\frac{-Defects}{Units}}$$

$$Yield = (1 - \frac{Defectives}{Units}) \times 100\%$$

OIT Consulting, Inc.

Source: Implementing Six Sigma Copyright © 2004 <u>QIT</u> Consulting, Inc

PPM vs. DPMO

PPM – Part Per Million DPMO – Defects per Million Opportunity

$$PPM = \frac{Defects}{Units} \times 10^6$$

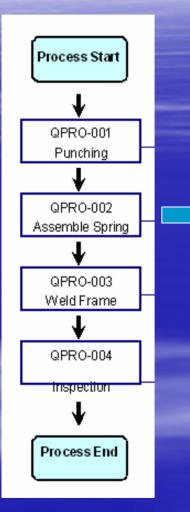
$$DPMO = \frac{Defects}{Units \times Opportunities} \times 10^{6}$$

Sigma vs. Six Sigma

- Sigma, or standard deviation, is used as a scaling factor to convert upper and lower specification limits to Z.
- Six Sigma can be understood/perceived at three levels:
 - Metric: 3.4 Defects Per Million Opportunities. DPMO allows you to take complexity of product/process into account. Rule of thumb is to consider at least three opportunities for a physical part/component
 one for form, one for fit and one for function, in absence of better considerations.
 - Methodology: DMAIC/DFSS structured problem solving roadmap and tools.
 - Philosophy: Reduce variation in your business and take customerfocused, data driven decisions.

Source: isixsigma.com

Process Mapping


Process Mapping

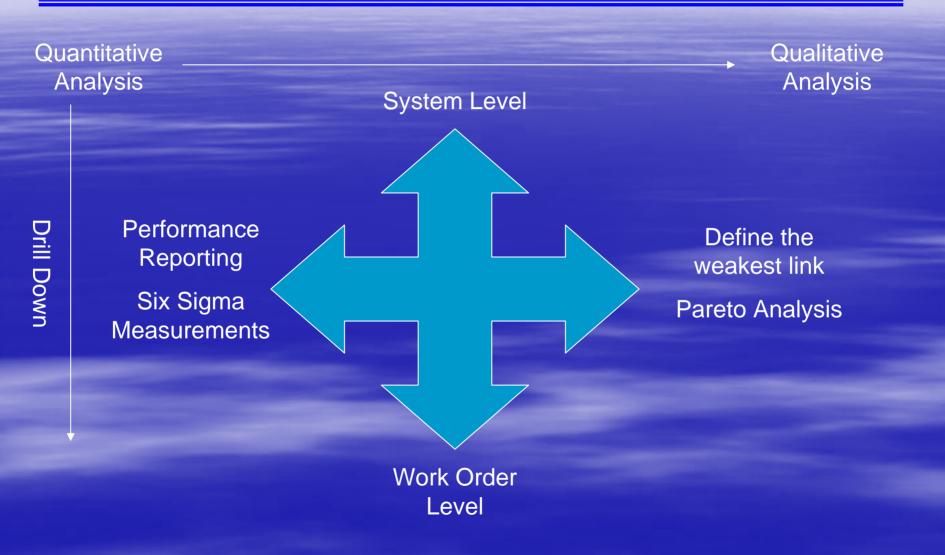
Simply follow the existing process and write down all process steps.

OIT Consulting, In

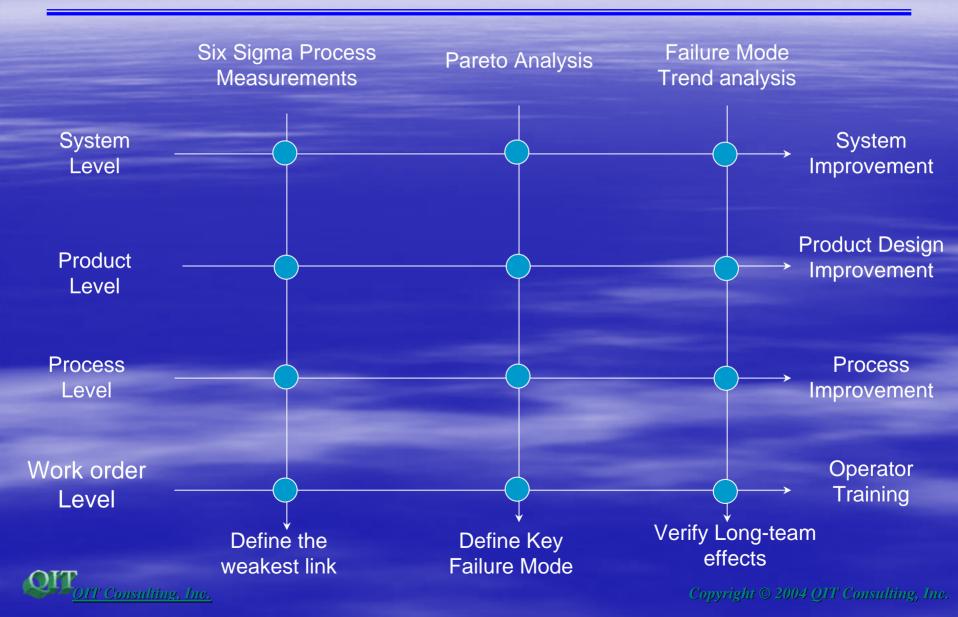
Transfer Process Map to Traveler

QPRO-002 Traveler QIT Product 002 Work Order Number				Eng. Rep.: Jim Smit Production Rep.: Jim Smit Quality Rep.: Jim Smit			
Process No.	Process Name	Process Attribute	Process Owner	Production Start Time	Production Finish Time		Defects
QPRO-001	Punching	Normal Process	Ron W.				
QPRO-002	Assemble Spring	Køy Process	Tim Wong				
QPRO-003	Weld Frame	Køy Process	John				
QPRO-004	Inspection	Normal Process	Jim Smith				

Data Collecting

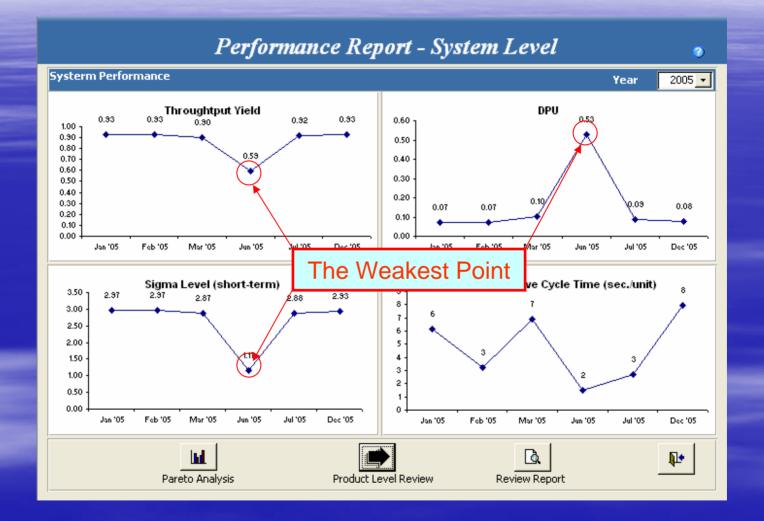

QPRO-002 TravelerEng. Rep.:Jim SQIT Product 002WO-0504018Quality Rep.:Jim SWork Order NumberWO-0504018Quality Rep.:Jim S						Smith	
Process No.	Process Name	Process Attribute	Process Owner	Production Start Time	Production Finish Time	Production Input	Defects
QPRO-001	Punching	Normal Process	Ron W.	8:00AM 12/1/2005	8:15AM 12/1/2005	100	10
QPRO-002	Assemble Spring	Key Process	Tim Wong	8:15AM 12/1/2005	8:30AM 12/1/2005	90	0
QPRO-003	Weld Frame	Key Process	John	8:30AM 12/1/2005	9:00AM 12/1/2005	90	2
QPRO-004	Inspection	Normal Process	Jim Smith	9:00AM 12/1/2005	10:00AM 12/1/2005	90	0

Data Analysis



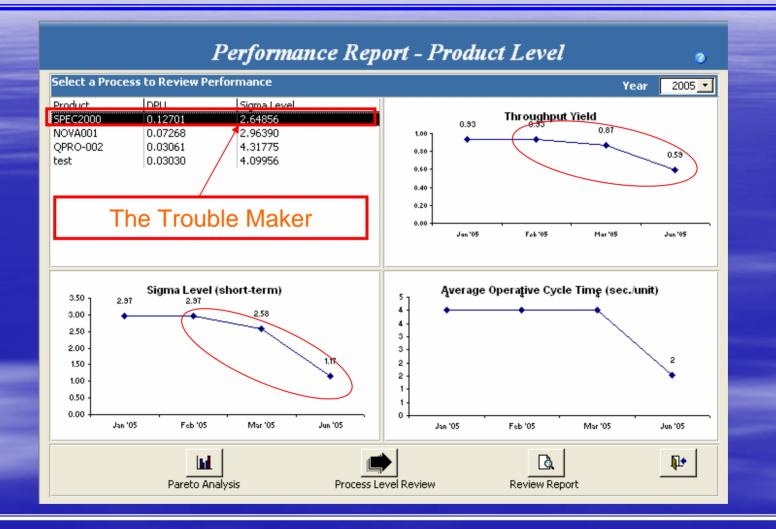
Analysis Approach

QIT Analysis Matrix

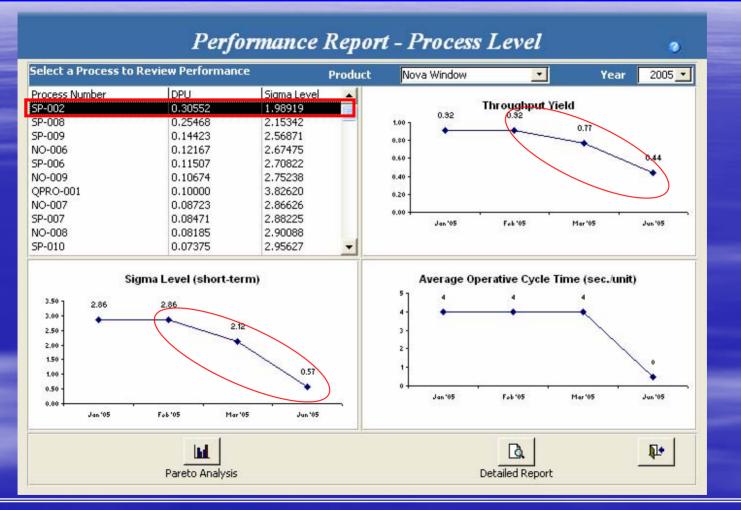

Examples of Data Analysis

Next we are going to use examples from QIT Production Quality Management System to demonstrate the analysis approaches.

Visit <u>QITConsulting.com</u> to find out more details and download QIT Production Quality Management System

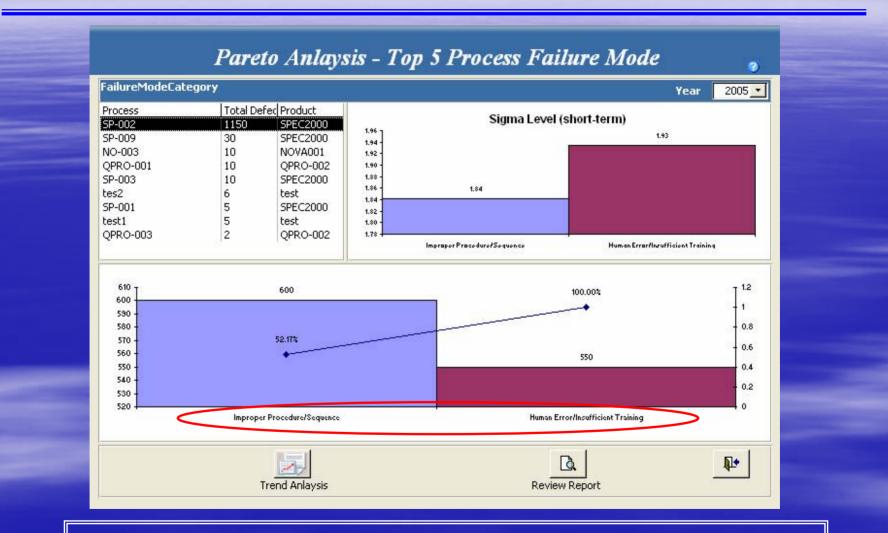


Example – System Level Performance Report



Example – Product Level Performance Report

This example not only discovers the Trouble Maker, but also shows the product quality is in a down trend.


Example – Process Level Performance Report

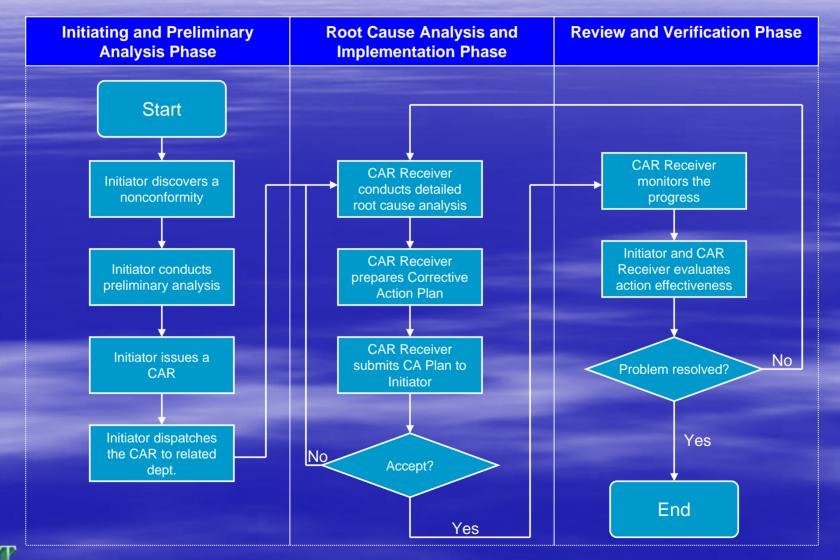
By drill down to the process level of the Trouble Maker, this example highlights the key processes, which drag down the product quality.

<u> 7011' Consulting, Inc</u>

Example – Process Level Pareto

Now the key failure modes are defined, and a CAR need to be issued to this process owner.

Analysis Summary


System performance review - To define the weakest point Product Level performance review - To define Trouble Maker Process Level performance review - To define key process Finally, Pareto analysis in Process level - To discover key failure mode

Improve the Process

Corrective Action Management System

QIT Corrective Action Management System

 To find out more about a corrective action management system, please visit <u>QIT On</u> <u>Line Training</u> section.

Verify Long-term Effects

The Effects of the Corrective Actions

					Year	2005 🗸
Process 5P-002 5P-009 NO-003 QPRO-001 5P-003 SP-001 SP-001 SP-001 SP-001 QPRO-003	Total Defect 1150 30 10 10 10 6 5 5 2	Failure Mode Improper Procedure/Sequence Human Error/Insufficient Trainin	ıg	DPU 0.3525 0.3231		ma 3 4132 93362
2.00 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.60 0.40 0.20 0.00	Sigina Level (short-term) 1.84	0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00	ıghtput Yield	0.70	>
	Mar '05	Jun '05	Mər '05	d Report	Jun '05	₽•

PPOIT Consulting, Inc.

Summary

Having the correct understanding of Six Sigma concepts and utilizing the right tool, Six Sigma implementation could be simple.
The success factor of implementing Six Sigma is to define the key issues and resolve the key issues.

Need more information and helps?

service@QITConsulting.com

Download the program

